Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic characterization of the arsenic response locus in S. cerevisiae.

Identifieur interne : 000396 ( Main/Exploration ); précédent : 000395; suivant : 000397

Proteomic characterization of the arsenic response locus in S. cerevisiae.

Auteurs : Kirk L. West [États-Unis] ; Stephanie D. Byrum [États-Unis] ; Samuel G. Mackintosh [États-Unis] ; Rick D. Edmondson [États-Unis] ; Sean D. Taverna [États-Unis] ; Alan J. Tackett [États-Unis]

Source :

RBID : pubmed:30739529

Descripteurs français

English descriptors

Abstract

Arsenic exposure is a global health problem. Millions of people encounter arsenic through contaminated drinking water, consumption, and inhalation. The arsenic response locus in budding yeast is responsible for the detoxification of arsenic and its removal from the cell. This locus constitutes a conserved pathway ranging from prokaryotes to higher eukaryotes. The goal of this study was to identify how transcription from the arsenic response locus is regulated in an arsenic dependent manner. An affinity enrichment strategy called CRISPR-Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) was used, which provides for the proteomic characterization of a targeted locus. CRISPR-ChAP-MS was applied to the promoter regions of the activated arsenic response locus and uncovered 40 nuclear-annotated proteins showing enrichment. Functional assays identified the histone acetyltransferase SAGA and the chromatin remodelling complex SWI/SNF to be required for activation of the locus. Furthermore, SAGA and SWI/SNF were both found to specifically organize the chromatin structure at the arsenic response locus for activation of gene transcription. This study provides the first proteomic characterization of an arsenic response locus and key insight into the mechanisms of transcriptional activation that are necessary for detoxification of arsenic from the cell.

DOI: 10.1080/15592294.2019.1580110
PubMed: 30739529
PubMed Central: PMC6557609


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic characterization of the arsenic response locus in S. cerevisiae.</title>
<author>
<name sortKey="West, Kirk L" sort="West, Kirk L" uniqKey="West K" first="Kirk L" last="West">Kirk L. West</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Byrum, Stephanie D" sort="Byrum, Stephanie D" uniqKey="Byrum S" first="Stephanie D" last="Byrum">Stephanie D. Byrum</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>b Arkansas Children's Research Institute , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>b Arkansas Children's Research Institute , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mackintosh, Samuel G" sort="Mackintosh, Samuel G" uniqKey="Mackintosh S" first="Samuel G" last="Mackintosh">Samuel G. Mackintosh</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Edmondson, Rick D" sort="Edmondson, Rick D" uniqKey="Edmondson R" first="Rick D" last="Edmondson">Rick D. Edmondson</name>
<affiliation wicri:level="2">
<nlm:affiliation>c College of Medicine , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>c College of Medicine , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taverna, Sean D" sort="Taverna, Sean D" uniqKey="Taverna S" first="Sean D" last="Taverna">Sean D. Taverna</name>
<affiliation wicri:level="2">
<nlm:affiliation>d Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>d Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , MD </wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>e Center for Epigenetics , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>e Center for Epigenetics , The Johns Hopkins University School of Medicine , Baltimore , MD </wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tackett, Alan J" sort="Tackett, Alan J" uniqKey="Tackett A" first="Alan J" last="Tackett">Alan J. Tackett</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>b Arkansas Children's Research Institute , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>b Arkansas Children's Research Institute , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30739529</idno>
<idno type="pmid">30739529</idno>
<idno type="doi">10.1080/15592294.2019.1580110</idno>
<idno type="pmc">PMC6557609</idno>
<idno type="wicri:Area/Main/Corpus">000559</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000559</idno>
<idno type="wicri:Area/Main/Curation">000559</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000559</idno>
<idno type="wicri:Area/Main/Exploration">000559</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic characterization of the arsenic response locus in S. cerevisiae.</title>
<author>
<name sortKey="West, Kirk L" sort="West, Kirk L" uniqKey="West K" first="Kirk L" last="West">Kirk L. West</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Byrum, Stephanie D" sort="Byrum, Stephanie D" uniqKey="Byrum S" first="Stephanie D" last="Byrum">Stephanie D. Byrum</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>b Arkansas Children's Research Institute , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>b Arkansas Children's Research Institute , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mackintosh, Samuel G" sort="Mackintosh, Samuel G" uniqKey="Mackintosh S" first="Samuel G" last="Mackintosh">Samuel G. Mackintosh</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Edmondson, Rick D" sort="Edmondson, Rick D" uniqKey="Edmondson R" first="Rick D" last="Edmondson">Rick D. Edmondson</name>
<affiliation wicri:level="2">
<nlm:affiliation>c College of Medicine , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>c College of Medicine , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taverna, Sean D" sort="Taverna, Sean D" uniqKey="Taverna S" first="Sean D" last="Taverna">Sean D. Taverna</name>
<affiliation wicri:level="2">
<nlm:affiliation>d Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>d Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , MD </wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>e Center for Epigenetics , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>e Center for Epigenetics , The Johns Hopkins University School of Medicine , Baltimore , MD </wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tackett, Alan J" sort="Tackett, Alan J" uniqKey="Tackett A" first="Alan J" last="Tackett">Alan J. Tackett</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>b Arkansas Children's Research Institute , Little Rock , AR , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>b Arkansas Children's Research Institute , Little Rock , AR </wicri:regionArea>
<placeName>
<region type="state">Arkansas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Epigenetics</title>
<idno type="eISSN">1559-2308</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenate Reductases (genetics)</term>
<term>Arsenic (pharmacology)</term>
<term>Basic-Leucine Zipper Transcription Factors (genetics)</term>
<term>CRISPR-Cas Systems (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Proteomics (methods)</term>
<term>Repressor Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arsenate Reductases (génétique)</term>
<term>Arsenic (pharmacologie)</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de répression (génétique)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéomique (méthodes)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Systèmes CRISPR-Cas (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Basic-Leucine Zipper Transcription Factors</term>
<term>Membrane Transport Proteins</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de répression</term>
<term>Protéines de transport membranaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Arsenic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>CRISPR-Cas Systems</term>
<term>Gene Expression Profiling</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Régions promotrices (génétique)</term>
<term>Systèmes CRISPR-Cas</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arsenic exposure is a global health problem. Millions of people encounter arsenic through contaminated drinking water, consumption, and inhalation. The arsenic response locus in budding yeast is responsible for the detoxification of arsenic and its removal from the cell. This locus constitutes a conserved pathway ranging from prokaryotes to higher eukaryotes. The goal of this study was to identify how transcription from the arsenic response locus is regulated in an arsenic dependent manner. An affinity enrichment strategy called CRISPR-Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) was used, which provides for the proteomic characterization of a targeted locus. CRISPR-ChAP-MS was applied to the promoter regions of the activated arsenic response locus and uncovered 40 nuclear-annotated proteins showing enrichment. Functional assays identified the histone acetyltransferase SAGA and the chromatin remodelling complex SWI/SNF to be required for activation of the locus. Furthermore, SAGA and SWI/SNF were both found to specifically organize the chromatin structure at the arsenic response locus for activation of gene transcription. This study provides the first proteomic characterization of an arsenic response locus and key insight into the mechanisms of transcriptional activation that are necessary for detoxification of arsenic from the cell.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30739529</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2308</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Epigenetics</Title>
<ISOAbbreviation>Epigenetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic characterization of the arsenic response locus in S. cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>130-145</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15592294.2019.1580110</ELocationID>
<Abstract>
<AbstractText>Arsenic exposure is a global health problem. Millions of people encounter arsenic through contaminated drinking water, consumption, and inhalation. The arsenic response locus in budding yeast is responsible for the detoxification of arsenic and its removal from the cell. This locus constitutes a conserved pathway ranging from prokaryotes to higher eukaryotes. The goal of this study was to identify how transcription from the arsenic response locus is regulated in an arsenic dependent manner. An affinity enrichment strategy called CRISPR-Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) was used, which provides for the proteomic characterization of a targeted locus. CRISPR-ChAP-MS was applied to the promoter regions of the activated arsenic response locus and uncovered 40 nuclear-annotated proteins showing enrichment. Functional assays identified the histone acetyltransferase SAGA and the chromatin remodelling complex SWI/SNF to be required for activation of the locus. Furthermore, SAGA and SWI/SNF were both found to specifically organize the chromatin structure at the arsenic response locus for activation of gene transcription. This study provides the first proteomic characterization of an arsenic response locus and key insight into the mechanisms of transcriptional activation that are necessary for detoxification of arsenic from the cell.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>West</LastName>
<ForeName>Kirk L</ForeName>
<Initials>KL</Initials>
<Identifier Source="ORCID">0000-0002-9894-4549</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Byrum</LastName>
<ForeName>Stephanie D</ForeName>
<Initials>SD</Initials>
<Identifier Source="ORCID">0000-0002-1783-3610</Identifier>
<AffiliationInfo>
<Affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Arkansas Children's Research Institute , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mackintosh</LastName>
<ForeName>Samuel G</ForeName>
<Initials>SG</Initials>
<AffiliationInfo>
<Affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Edmondson</LastName>
<ForeName>Rick D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>c College of Medicine , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taverna</LastName>
<ForeName>Sean D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>d Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>e Center for Epigenetics , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tackett</LastName>
<ForeName>Alan J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>a Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Arkansas Children's Research Institute , Little Rock , AR , USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM118760</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Epigenetics</MedlineTA>
<NlmUniqueID>101265293</NlmUniqueID>
<ISSNLinking>1559-2294</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C109281">ACR3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050976">Basic-Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C077832">SKO1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="C506971">ARR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="D053502">Arsenate Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053502" MajorTopicYN="N">Arsenate Reductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050976" MajorTopicYN="N">Basic-Leucine Zipper Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064113" MajorTopicYN="N">CRISPR-Cas Systems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">CRISPR</Keyword>
<Keyword MajorTopicYN="Y">Chromatin</Keyword>
<Keyword MajorTopicYN="Y">epigenetics</Keyword>
<Keyword MajorTopicYN="Y">mass spectrometry</Keyword>
<Keyword MajorTopicYN="Y">transcription</Keyword>
<Keyword MajorTopicYN="Y">yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30739529</ArticleId>
<ArticleId IdType="doi">10.1080/15592294.2019.1580110</ArticleId>
<ArticleId IdType="pmc">PMC6557609</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1999 Apr 30;97(3):299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Aug 19;400(6746):784-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10466730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Oct;19(10):6621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Oct;4(4):649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10549297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Dec 10;286(5447):2179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10591654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2000 Apr;10(2):187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Nov 10;103(4):667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Mar 23;104(6):817-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Sep 15;15(18):2457-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2001 Dec 1;177(2):132-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11740912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Sep 1;75(17):4646-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14632076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 May;15(5):2049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14978214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Feb 27;13(4):573-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14992726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 May 21;566(1-3):141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 27;433(7024):434-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Apr 11;169(1):35-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Aug;5(13):3537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16041671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Mar;26(5):1610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jun;26(11):4095-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16705163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Sep;5(9):2339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16944946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2007 Jan 15;120(Pt 2):256-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Nov 1;415(3):467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18593383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2008 Sep;1138:366-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18837912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2687-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1901413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Sep;18(9):1987-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19621382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2009 Sep;10(9):1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Apr 15;24(8):748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):253-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics. 2011 Apr;6(4):526-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Aug;39(15):6369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Pharmacother. 2012 May;13(7):1031-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22468778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 Jul 26;2(1):198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22840409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Nov;41(20):e195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24030711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Nov;13(11):2896-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25106422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics. 2014 Sep;9(9):1207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25147920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2015 Jan 29;10:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25630343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2015 Aug 14;4(9):1122-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26276098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Sep 1;29(17):1795-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26401015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Dec 28;36(6):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26711267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2016 Oct;16(19):2503-2518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27329485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 Apr 4;8(14):23905-23926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 May 5;45(8):4413-4430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28115623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Feb 2;65(3):565-577.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28157509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Feb 2;65(3):578-580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28157510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gene Regul Mech. 2017 Apr;1860(4):472-481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28188921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Aug 24;170(5):1028-1043.e19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28841410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2017 Aug 1;31(15):1588-1600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28887412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2018 Feb 15;341:106-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29408041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Mar 20;9(1):1147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2018 Jun;15(6):437-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29735997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1994 Feb;90(2):139-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8156604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1993 Jan-Feb;6(1):102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8448339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 May;239(1-2):273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8510655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jul 1;11(13):1640-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jul;13(9):819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Mar 1;12(5):640-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9499400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1998 Sep 11;408(3):203-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9806419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):86-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Dec;2(6):863-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9885573</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arkansas</li>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arkansas">
<name sortKey="West, Kirk L" sort="West, Kirk L" uniqKey="West K" first="Kirk L" last="West">Kirk L. West</name>
</region>
<name sortKey="Byrum, Stephanie D" sort="Byrum, Stephanie D" uniqKey="Byrum S" first="Stephanie D" last="Byrum">Stephanie D. Byrum</name>
<name sortKey="Byrum, Stephanie D" sort="Byrum, Stephanie D" uniqKey="Byrum S" first="Stephanie D" last="Byrum">Stephanie D. Byrum</name>
<name sortKey="Edmondson, Rick D" sort="Edmondson, Rick D" uniqKey="Edmondson R" first="Rick D" last="Edmondson">Rick D. Edmondson</name>
<name sortKey="Mackintosh, Samuel G" sort="Mackintosh, Samuel G" uniqKey="Mackintosh S" first="Samuel G" last="Mackintosh">Samuel G. Mackintosh</name>
<name sortKey="Tackett, Alan J" sort="Tackett, Alan J" uniqKey="Tackett A" first="Alan J" last="Tackett">Alan J. Tackett</name>
<name sortKey="Tackett, Alan J" sort="Tackett, Alan J" uniqKey="Tackett A" first="Alan J" last="Tackett">Alan J. Tackett</name>
<name sortKey="Taverna, Sean D" sort="Taverna, Sean D" uniqKey="Taverna S" first="Sean D" last="Taverna">Sean D. Taverna</name>
<name sortKey="Taverna, Sean D" sort="Taverna, Sean D" uniqKey="Taverna S" first="Sean D" last="Taverna">Sean D. Taverna</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000396 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000396 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30739529
   |texte=   Proteomic characterization of the arsenic response locus in S. cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30739529" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020